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a b s t r a c t

It is crucial to separate the soil geochemical background concentrations from anthropogenic anomalies
and to provide a realistic environmental geochemical map honoring the fluctuations in original data. This
study was carried out in the Hengshi River watershed, north of Guangdong, China and the method pro-
posed combined exploratory data analysis (EDA), sequential indicator co-simulation (SIcS) and the ratio of
isothermal remnant magnetization (S100 = −IRM−100 mT/SIRM). The results showed that this is robust pro-
cedure for defining and mapping soil geochemical background concentrations in mineralized regions.
The rock magnetic parameter helps to improve the mapping process by distinguishing anthropogenic
influences.
xploratory data analysis
equential indicator co-simulation
ock magnetic parameter

In this study, the geochemical backgrounds for four potentially toxic heavy metals (copper 200 mg/kg;
zinc 230 mg/kg; lead 190 mg/kg and cadmium 1.85 mg/kg) Cu, Zn and Cd exceeded the soil Grade II
limits (for pH < 6.5) from the Chinese Environmental Quality Standard for Soils (GB 15618-1995) (EQSS)
which are 100, 200, 250 and 0.3 mg/kg for Cu, Zn, Pb and Cd, respectively. In particular, the geochemical
background level for Cd exceeds standard six times. Results suggest that local public health is at high-risk
along the riparian region of the Hengshi River, although the watershed ecosystem has not been severely

disturbed.

. Introduction

The effects of anthropogenic activities on ecosystem functions
nd risks to human health have highlighted the need for measur-
ng the geochemical background [1,2]. Therefore, as the main task of
roject 360 within the International Geosciences Program (IGCP),
he geochemical background has become a priority in environmen-
al changes issues [3,4]. The term “geochemical background” has
et to be clearly defined. However, it has been agreed that the
eochemical background provides fundamental guidance for mon-
toring environmental changes caused by human activities on the
urface environment [5–7].
A geochemical background characterized by spatio-temporal
ariability can be affected by the basic geology and soil type in
he secondary environment [8]. Background data, particularly in

ineralized regions, are represented by individual probabilistic
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patterns due to either natural enrichment or human activities. Thus,
it is a complex task to correctly define the geochemical background
and to more realistically delineate the fluctuations in the original
data. Conventional statistical methods including mean calculations
and probability distributions are no longer useful for dealing with
spatial variables in a complex environment [9]. Both exploratory
data analysis (EDA) [10–12] and spatial analysis have been recom-
mended as an effective tool to map the geochemical background
and allow further analysis of the processes in complex environ-
ments [13,14].

EDA techniques combining graphs, such as histograms, boxplots
and normal quantile–quantile (Q–Q) plots, are helpful to allow
rapid insight into the distributions and features of the data. It
is appropriate for identifying anthropogenic influences because it
eliminates some of the geogenic anomalies. The EDA technique was
tested by Bounessah and Atkin [15], Reimann et al. [10], Panno et al.
[11] and others and proved to be effective and robust for studying
the geochemical characteristics of sediment, soil and ground water.
Spatial analysis techniques, like geostatistical methods, have
been effectively used to investigate the spatial variability of envi-
ronmental variables and incorporate this information into maps
[16]. The procedure integrating exploratory data analysis (EDA) and
the ordinary kriging (OK) has been applied to the regional back-

http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:xuzhou228@yahoo.cn
mailto:xiabch@mail.sysu.edu.cn
dx.doi.org/10.1016/j.jhazmat.2010.04.068
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round levels of Ag, As, Cd, Cu, Hg, Ni, Pb, TI and Zn in soils from
atorce-Matehuala (Mexico) [17]. However, the kriging estimate

s rarely met for environmental attributes, which typically display
ighly skewed histograms, because it relies on assumptions of nor-
ality in the distribution of prediction errors and homoscedasticity

18].
At present, sequential simulation algorithms of the stochastic

imulation technique, such as the sequential Gaussian simulation
SGS), sequential indicator simulation (SIS) and direct sequential
imulation (DSS) are used widely to delineate the spatial distri-
ution and uncertainty of pollutants in a heterogeneous medium
19–22]. Generally, the distribution of heavy metal concentrations
as the right skewed. DSS and SIS are more suited to application,
s SGS requires strong assumptions of multi-Gaussian distribu-
ion which cannot be easily checked [20]. SIS does not require any
ssumptions of the shape of the conditional distribution and its
apping can be achieved with much flexibility in categorical data

23,24].
This paper will collocated co-simulations for soil geochem-

cal background distributions of potentially toxic heavy metals
PTHMs) using the sequential indicator co-simulation (SIcS). In
he upstream of the study area there lays Dabaoshan mine with
large rich polymetallic ore. This makes it difficult to separate the

oil geochemical background from human activities in mineralized
egions. In this paper, the ratio of isothermal remnant magneti-
ation (S100 = −IRM−100 mT/SIRM) is introduced to co-simulate the
eochemical background of PTHMs. The environmental implication
f this ratio is that the ratio increases as anthropogenic influence
s enhanced. The range of S100 is 0–1. Robinson [25] indicated that
he dominance of ferrimagnetic materials caused by anthropogenic
nfluence when S100 is more than 0.7. And, Lecoanet et al. [26], Lu
nd Bai [27] and others had the agreement with the tested param-
ter in different regions.

Dabaoshan mine is a large sulfide deposit containing rich iron,
opper, lead and zinc in China. Previous studies indicated that Cu,
n, Pb and Cd content exceeded the soil Grade II limits (for pH < 6.5)
rom the Chinese Environmental Quality Standard for Soils (GB
5618-1995) (EQSS) after detecting Cr, Cd, Co, Ni, Cu, Zn, As, Sb,
g and Pb content in the topsoil and water about the Dabaoshan
ine [28,29]. Accordingly, the aims of this study are: (1) to define

nd visualize the regional soil geochemical backgrounds of cop-
er, zinc, lead and cadmium based on EDA and SIcS; (2) to try and
se the rock magnetic parameter to improve the mapping process
or soil geochemical backgrounds in mineralized regions; and (3)
o detect potential hazardous areas to give regional early warning
nformation on human health and eco-environmental risks.

. Materials and methods

.1. Site description

The study area (E113◦37′33′′–113◦55′58′′, N24◦15′26′′–
4◦39′37′′), with a total area of 1017.9 km2, is located on the
oundary of Qujiang County and Wengyuan County in Guangdong
rovince, China (Fig. 1). It includes the Hengshi River watershed
nd three additional watersheds—the Chuandu River watershed,
ielong watershed and Xitou watershed. These are considered a
otal geographical system due to the continuous geologic units
nd land use. The site of interest is characterized by typical humid
ubtropical conditions. The average annual temperature is 20.3 ◦C

nd precipitation is approximately 1762 mm. The weathering of
urface rock is severe and the soil pH is lower than 6.5.

In the study area, irrigated agriculture and ore deposit mining
re the dominant land use patterns. The minerals mainly consist
f pyrite, pyrrhotite, chalco pyrite, and minor amounts of limonite,
Materials 180 (2010) 542–551 543

chalcocite, galena, sphalerite, calaverite and native bismuth. Since
the 1970s, mining on Dabao Mountain has been the most impor-
tant pollution source in the whole watershed. Acid mine drainage
(AMD) has run into the Hengshi River, which is the primary water
supply for agriculture and human requirements in the alluvial
plain. Several high-risk sites influenced by heavy metals have been
detected in the study area [30] and have posed adverse effects to
local public health, such as cancer, neuropathies and growth prob-
lems [31,32].

2.2. Sampling and analysis

2.2.1. Sampling
The main soil types in the study area are red earth and moun-

tain yellow earth. Sampling sites were selected according to soil
type and land use, and come from eight groups: farmland, forest,
grassland, garden plots, industrial mine land, roads, habitable land,
land immediately adjacent to water, and all other types of land.
The uncertainty of sampling is caused by gaps between the sam-
pled sites. It is necessary that the interval of measurement be <5 km
to ensure the enough high accuracy of spatial analysis [33,34].
And, the maximum sampling grid with 16 km2 is required by the
investigation of regional soil geochemical background of Multi-
purpose Investigation and Regulation of Regional Geochemistry
(Technical Standard of Geological Investigation in China Geologi-
cal Survey (DD2005-01)). Accordingly, the average sampling grid
was designed a square mesh with sampling points at approxi-
mately 2.5 km × 2.5 km with the actual sampling sites randomly
selected near the target sampling sites in each grid cell. The samples
were located using hand-held GPSs, ASTER Orthograph satellite
images (data: 2006-10; row/path: 122/42, 43; pixel: 15 m), and
topographic maps and geological profile maps at scales of 1:10,000
and 1:200,000, respectively. Sixty-seven samples were collected
from the A horizon (top 20 cm) in the Hengshi River watershed.
The sampling of sites could not be of uniform design because some
are inaccessible.

Each sample was collected with a stainless steel sampler and a
wooden shovel, and stored in a plastic bag. The soil samples were
air-dried at room temperature, grinded, and then sieved to retain
the <1.7 mm fraction using a nylon sieve. Each sample (typically
3–9 g, average weight 4.65 g) was packed into an 8 cm3 nonmag-
netic plastic box for a rock magnetic test. A sub-sample (100 g) of
each soil sample was ground to <0.15 mm with a nylon sieve for
heavy metal analysis.

2.2.2. Testing of total heavy metal concentrations
Total heavy metal concentrations were measured according to

the standard method [35]. The soil samples for heavy metal analy-
sis were digested by an aqua regia (HNO3–HCl) acid digestion in
a microwave oven. Total concentrations of Cu, Pb and Zn were
measured by Inductively Coupled Plasma Optical Emission Spec-
trometer (ICP-OES) and total Cd concentration was measured by
Graphite Furnace Atomic Absorption Spectrometry (GFAAS).

Reagent blanks were used to reduce the systematic error. A stan-
dard sample was used for every ten tested samples. The accuracy
was evaluated by a standard reference material of a subtropical red
soil from the Hengshi River watershed. The results of recovery were
85.83% (Cu), 124.24% (Pb), 88.89% (Zn) and 118.08% (Cd), respec-
tively. The errors of the estimate for the measured metals were
determined by the relative standard deviation (S.D. < 5%) based on
three replicates of one sample randomly chosen.
2.2.3. Rock magnetic measurements
The magnetism of the samples was acquired in magnetic fields of

1 Tesla (T), followed by −100 milliTesla (mT) (reverse) exerted with
a speed as constant as possible at room temperature using an ASC
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Fig. 1. Digital terrain elevation map of sampling s

M10-30 pulse magnetizer. The values of isothermal remnant mag-
etization (IRM) were obtained along the same axial direction using
2G Enterprises DC-SQUID cryogenic magnetometer housed in a
agnetically shielded room (<500�) at the Paleomagnetic Lab of

he Key Laboratory of Marginal Sea Geology, South China Sea Insti-
ute of Oceanology, Chinese Academy of Science, Guangzhou, China.
n this case, the IRM acquired at 1 T was regarded as the saturation
sothermal remnant magnetization (SIRM) because most magnetic

inerals are saturated in this field. S100(S100 = −IRM−100 mT/IRM1 T)
as calculated [36].

.3. EDA method

EDA was applied to Descriptive Statistics models using the SPSS
oftware (version 17.0) for Windows. Graphs of experimental data
ontain histograms, density markers, distribution curves and skew-
ess, as well as descriptions of summary statistics. Outliers were

nspected through boxplots, which include a non-outlier range,
ower quartile (25th percentile), median, upper quartile (75th per-
entile), outliers, and extreme values. Outliers exist outside the
hiskers. Normal Q–Q plot was applied to look for the concentra-

ion intervals which imply the likely presence of different processes
r multiple populations.

.4. SIcS method

SIcS makes no prior assumptions about the shape or type of
he conditional distribution. The results of the indicator simula-
ion can be improved by integrating additional information. The
oft data has to be coded into prior local probability values, and
ndicator kriging (IK) can be used to integrate that information into

posterior probability value [37]. In this study the first variable
imulated was the PTHMs as hard data. S100 was the next variable
o be co-simulated as soft data.
.4.1. Indicator coding
The environmental information of continuous soil property z at

locations u˛, z(u˛) (˛ = 1, . . ., n) includes:
) and geological profile map (B) of the study area.

(1) The local hard indicator data i(u˛; zk) originated from the local
hard data (PTHMs) z(u˛):

i(u˛; zk) = {1 if z(u˛) ≤ zk; 0 otherwise} (1)

where zk is a discretization of K threshold values in the range
of values of z(u˛).

(2) The local soft indicator data y(u˛; zk) originated from ancillary
information (S100), providing prior probabilities about the value
z(u˛):

y(u˛; zk) = Prob{Z(u˛) ≤ zk|local ancillary information} (2)

(3) Global prior information common to all locations u within the
area A:

F(zk) = Prob{Z(u) ≤ zk}, ∀u ∈ A (3)

2.4.2. Updating
To provide a model of uncertainty at location u, the local prior

cumulative distribution function (cdf) must be updated into a pos-
terior cdf using information supplied by neighboring local prior cdfs
[37]:

[Prob{Z(u) ≤ zk

∣∣n + n′ }]∗
IK

= �0(u)F(zk) +
n∑

˛=1

�˛(u; zk)i(u˛; zk)

+
n′∑

˛′=1

v˛′ (u; zk)y(u′
˛; zk) (4)

where �˛(u; zk) is the weight attached to the n neighboring hard
indicator data from Eq. (1), v˛′ (u; zk) are the weights attached to the
n′ neighboring soft indicator data from Eq. (2) and �0 is the weight
attributed to the global prior cdf.

2.4.3. Markov-type approximation

In order to simplify the variogram inference of two auto

covariance and one cross-covariance at each cutoff value zk, the
Markov–Bayes model is used.

CIY (h, zk) = B(zk)CI(h, zk) ∀h
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ig. 2. Experimental data patterns of histograms, density markers, distribution cu
oils.

Y (h, zk) =
{

|B(zk)|CI(h, zk), ∀h = 0
B(zk)2CI(h, zk), ∀h > 0

(5)

he coefficients B(zk) are obtained from calibration of the soft y data
o the hard z data.

.4.4. SIS
SIS includes all available data within a given neighborhood

f the location u, including the original data and all previously

imulated values. In this study, the cutoff value zk was set to
e the geochemical backgrounds of the four heavy metals and
heir Grade II limits (pH < 6.5) from the Chinese EQSS (GB 15618-
995). For each heavy metal concentration cutoff value, zk the
xperimental semi-variogram of the indicator code was computed

Fig. 3. Boxplots for the concentration of cop
nd summary statistics of the concentrations of copper, zinc, lead and cadmium in

and this was modeled using a linear combination of permissi-
ble semi-variogram models. A random path visiting each node
of the regularly spaced grid covering the study area was estab-
lished. At each un-sampled location, the procedure used was as
follows:

(1) For a location u in the random path, each heavy metal ccdf value
was estimated as a linear combination of neighboring indica-
tor data by indicator kriging. ccdf is the probability that the

heavy metal concentration was greater than the soil geochemi-
cal background of each heavy metal and their soil Grade II limits
(pH < 6.5) from EQSS.

(2) The order relation deviations of the obtained probabilities were
corrected and a continuous model for the prior ccdf for each

per, zinc, lead and cadmium in soils.
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Environmental geochemical probability patterns are close to
lognormal (positive skewness) for outliers from either natural
enrichment or human activities. These outliers usually exist in
mineralized regions or are concentrated in contaminated sites.
Histograms provide a graphical data summary depending on the

Table 1
Comparison of concentrations of the four heavy metals (mg/kg) in soils among
natural backgrounds (the Chinese EQSS), Grade II limits (the Chinese EQSS) and
geochemical background of the watershed.
Fig. 4. Normal Q–Q plots of the eliminated outliers for copp

heavy metal concentration at location u was constructed by
interpolating or extrapolating ccdf values.

3) A simulated value for each heavy metal concentration was
randomly drawn from the prior ccdf for each heavy metals
concentration at location u.

4) The indicator code of the simulated values at location u was
added into the prior ccdf modeling for the next location u + 1.

Along the random path, repeating steps (1)–(4) until all nodes
re visited and each node has received a simulated value will obtain
realization of the SIS.

Using the Markov–Bayes algorithm amounts to an indicator
o-kriging, where S100 data cross-covariance is calibrated from
he hard indicator covariance models. In all other aspects the

arkov–Bayes algorithm is similar to SIS.
Repeating the SIcS L times, each time using a different path to

isit all nodes of the grid defined over the study area, will result
n L equiprobable realizations. Six hundred repeats of the simula-
ion (the size of the grid cell is 15 m × 15 m) were carried out in this
tudy and the search radii were set as ranges of the semi-variogram
odels. In this study, the experimental variogram and covariance
odels were obtained by using the software package GS+ (Gamma
esign). The “Cosisim” program in the SGeMS (Stanford Geostatis-

ical Modeling Software) software was used to perform the SIcS.

.5. Uncertainty analysis of simulated results
The main objectives of this study are to define soil geochemical
ackgrounds and to detect areas that are potential hazardous to
uman health and the eco-environment. Consequently, the lowest
hreshold was chosen from soil geochemical background for each
eavy metal, with its soil Grade II (pH < 6.5) limit from the Chinese
c, lead and cadmium (arrow a: the first bend of the slope).

EQSS used as the critical limit. The probability that the unknown
heavy metal concentration z(i) at i is greater than its critical limit
(zcl), denoted by Prob[z(i) > zcl], can be calculated from the following
equation:

Prob[z(i) > zcl] = n(i)
600

(6)

The SIS was carried out 600 times and n(i) is the number of realiza-
tions that show the heavy metal concentration as higher than the
critical limit at node i. Eq. (6) can be used to assess the reliability of
the geochemical maps for the four heavy metals at a given critical
probability.

3. Results and discussion

3.1. Defining the soil geochemical background of PTHMs

3.1.1. Experimental data patterns
Heavy metals Cu Zn Pb Cd

Soil natural background 35 100 35 0.20
Grade II (pH < 6.5 for soils) 100 200 250 0.30
Soil geochemical background 200 230 190 1.85
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Fig. 5. Variograms of Log-transformed soil C

ata structure without any assumptions [38]. Before any data
nalysis is applied, an insight to the inherent data patterns of
he experimental heavy metal concentrations is displayed in
ig. 2. Each graph shows a histogram, density marker, distribution
urve and summary statistics of the heavy metal concentra-
ions.
Results show that the outliers as indicators of unusual pro-
esses more easily recognized in the density marker. One of the
mportant features of the histograms is that the four heavy metals
re right-skewed. Skewness characterizes the degree of asymme-
ry of a distribution around its mean. Generally, high skewness

Fig. 6. Experimental indicator (cross) covariance for
, Zn data, Pb data, Cd data and S100 raw data.

value indicates that the majority of its values are concentrated
on the low value end representing the relatively uncomplicated
environment in soils [39]. The skewness feature of Pb concentra-
tion suggests that the majority of the samples at lower values and
that Zn and Cu concentration have the similar distributions. The
pattern of Cd concentration show that different processes, such

as lithological processes or contamination, lead to elevated metal
concentration. The distribution reveals that anthropogenic pollu-
tion of Cd is more difficult to be separated from natural process
than those of Pb, Zn and Cu due to the coexistence of different
processes.

the critical limit of each heavy metal in soils.
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.1.2. Detection of anomalous values
A graphical inspection of geochemical data is necessary before

he initial data analysis because environmental geochemical data
o not usually exhibit Gaussian pattern. A simulation of box-
lots provides the explanation for observed behavior and is more
ppropriate for identifying anthropogenic influences because it
liminates some of the geogenic anomalies [15]. Outliers of the four
eavy metal concentrations are identified outside the whiskers (the
hiskers represent the 10th and 90th percentiles) of the boxplots.

n Fig. 3, all the anomalies (outliers) are clearly observed outside the
hiskers. The outliers are situated in the mining areas on moun-

ain and in polluted sites on the alluvial plain. The ‘hot spots’ are
ocated in the Dabaoshan mine (samples 3, 22 and 30), the Tielong

atershed (samples 26 and 54), the riparian zone of the Hengshi
iver (samples 5–8) and in the Xiaba-Fupo zone (samples 47 and

5). The boxplot detected distinctly the peculiarities of the anoma-

ous values from the raw data and provide more details of data
tructure than those of the histograms. It should be mentioned that
he outliers should be removed from the datasets in the follow-
ng statistical analysis. The anomalies may cause biased results and
geochemical background and Grade II limit of each heavy metal.

make statistical results unreliable, as they have a strong effect on
the overall feature of the datasets. As demonstrated by Reimann et
al. [10], the outlier limits of the boxplot are not necessarily sym-
metric around the median. It is more realistic for the right-skewed
geochemical background than the assumption of symmetry.

3.1.3. Soil geochemical backgrounds for Cu, Zn, Pb and Cd
The geochemical background threshold can be defined by using

a Q–Q plot prior to inspecting a clear and detailed visualization
of the experimental data distribution, which also provides under-
standing of the probability features [10]. The measured values are
plotted on the X axis and the expected values under a normal distri-
bution are plotted on the Y axis. This procedure provides a powerful
visualization of the data which shows breaks and inflection points
that imply the likely presence of different processes [39]. Addition-

aly, studies indicated that the technique of Q–Q plot could avoid the
eliminated impact of anthropogenic activities on the heavy metal
concentrations in the soil [40].

Bauer and Bor [41] defined the first bend of the slope on the
plot curve as the upper limit of any collective background data. A
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Fig. 8. Probabilities of each heavy m

end in the upper part of the graph (high values) can be used to
istinguish between natural samples with comparatively low con-
entrations and anthropogenic samples with high concentrations
8]. The ‘breaks’ on the copper, zinc and lead plots obviously exist
n normal Q–Q plots (Fig. 4) and their geochemical background can
e distinctly detected. However, the ‘inflection points’ on the cad-
ium slope likely reflect the presence of different processes such

s lithification, soil organic matter or anthropogenic influences.
earching for the inflection points needs to be aided by the envi-
onmental and geology investigations for determining cautiously
he geochemical background of Cd contents.

The soil geochemical backgrounds of the four metals were deter-
ined from the first bend in the slope and are shown in Table 1.

esults indicate that the geochemical backgrounds of the four
eavy metals except Pb are above the Grade II limits at pH < 6.5
EQSS) which are established to protect agriculture and human

ealth. The upper background levels for Cd are six times greater
han the Grade II limits.

Geochemical association of heavy metal in soils is mainly deter-
ined by the regional geological features, pedogenesis and the

haracteristics of heavy metal. It would influence regional geo-
soil exceeding its own critical limit.

chemical background. The soil geochemical background of the
four metals may vary greatly between the national scale and the
watershed scale, as the land uses and parent rock of the water-
shed are much more complex than those of the whole territory
of China. Therefore, previous pollutant results of the four met-
als from anthropogenic activities in soils could be over-estimated
based on the national reference background values. The regional
environmental studies have needed to be guided by the regional
geochemical background to provide more realistic and scientific
evaluations.

3.2. SIcS of soil geochemical backgrounds

3.2.1. Co-simulation of PTHMs with S100
In the process of mapping the geochemical background, it is a

complex task to correctly separate ‘hotspots’ derived from human

activities from natural enrichment in the mineralized regions. For
this reason it is necessary to collocated co-simulated process using
S100 as the auxiliary information. The heavy metal concentrations
and S100 were locally estimated by ordinary kriging, which gives
a first approximation of their distributions. The kriging was per-
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ormed on a regular grid of 15 m × 15 m points, with 2393 columns
nd 3201 lines. In this study, a logarithmic transformation was
pplied to the measured metal concentrations to eliminate the pos-
tive skewness of their distribution. The variograms, used to model
he dispersion, show an average behavior revealed by a spatial con-
inuity with a range of 5409–8667 m. These models were fitted with
aussian models (Fig. 5).

To check the Markov approximation, the hard indicator data
ere modeled against estimates of collocated S100 according to the

ross-covariance model from Eq. (5) (Fig. 6A–D). The soft data for
he minimal cutoff values for zCu, zZn, zPb and zCd provided informa-
ion on whether the actual heavy metal concentrations originated
rom anthropogenic influences or not. The cross-covariance for
ach of the heavy metals is shown in Fig. 6. The soft indicator data
ere applied to perform a sequential indicator co-simulation for
apping the soil geochemical background of the four heavy met-

ls because S100 has a similar spatial distribution and significant
orrelation with the metal concentrations.

From the parameters obtained above, the ‘cosisim’ program in
he SGeMS software was used to perform the SIcS. Each realization
s equiprobable and a set of realizations reveals the possible spa-
ial distribution for the geochemical background of the metals in
oils of the study area. Fig. 7 shows the estimated environmen-
al geochemical background maps for the four heavy metals in

ineralization-influenced soils in the study area. Features of the
oil geochemical backgrounds for the four metals are presented
n the similar spatial patterns. The areas of soils with elevated
oncentrations due to human activities extended from the Dabao
ountain mine to the riparian region on the middle-reaches of
engshi River. The areas of elevated Cu and Cd concentrations are

elatively wide along the riparian region of the Hengshi River. The
patial distributions agree with the graphic results based on the
DA analysis. Additionally, spatially discontinuous contaminated
ites were detected in the riparian area downstream of the Heng-
hi River. It suggests that there are “safe” concentrations of Cu, Zn
nd Pb in soils downstream of the watershed, whereas a potential
azardous risk of the four heavy metals is possible pooled in the
iver sediments. The riparian area of the river needs more atten-
ion for restoration so that it can be the buffer area to contain the
iffuse pollution from the contaminated sites.

.2.2. Assessing the reliability of simulated results with
ncertainty analysis

The joint probability calculated from the 600 realizations can
e used to assess the spatial uncertainty of the soil geochemi-
al background maps. The corresponding spatial uncertainty maps
resented in Fig. 8 show that regions with a higher probability of
levated heavy metal concentrations are mainly located around
he Dabaoshan mine and the middle-reaches of the Hengshi River,
ith conditional probability values over 0.80 in those regions.
ownstream of the Hengshi River and the Xitou watershed, the
onditional probability values are below 0.20. These mean that
he simulated results of the four metals have the higher certain-
ies in those polluted area and those unpolluted area, respectively.
n contrast, the simulated results of the heavy metals have the
ower reliabilities in the regions with conditional probability val-
es approximately 0.50. In this study, the joint probability of the
reas influenced by mining is over 0.70 and the spatial uncertainty
f soil geochemical backgrounds are much smaller.
. Conclusions

It is important for decreasing uncertainty of biogeochemical
uestions and models that a geochemical background should be
uantified correctly. In this paper, the method integrated by EDA
Materials 180 (2010) 542–551

and SIcS was proposed for defining and modeling the geochemical
background of Cu, Zn, Pb and Cd contents in mineralization-
influenced soil from the Hengshi River watershed, Guangdong
Province, China.

The combination of histogram, density marker, distribution
curve and skewness, boxplot and Q–Q plot presented a much
improved and quick insight into the distribution of empirical raw
data and its characteristic. By applying the EDA technique, anthro-
pogenic anomalies can be obviously detected through eliminating
some of the geogenic influences. No statistical model is assumed
in the procedure avoiding the need for transforming data, which is
more reliable for the right-skewed geochemical background than
the assumption of symmetry. However, defining the geochemi-
cal background in the Q–Q plot is still not a trivial task when the
different processes coexist. In this case, the inflection point of geo-
chemical background on the cadmium plot was determined with
the aid of the contour interval of the SIcS. It provided more spatial
details of environment and geology for identifying realistically the
geochemical background.

The SIcS method based on non-parametric geostatistics does
not require any assumptions of the shape of the conditional dis-
tribution and honors the fluctuations in original data. In particular,
S100 as spatially correlated secondary information was introduced
to separate the soil geochemical background concentrations from
anthropogenic anomalies. This parameter is appropriate to solve
the problem in mineralized soil as it displays a good spatial cross-
covariance with the four metals. Also, the magnetic method is
suitable to the environmental geochemistry on a large scale, for
it is comparatively rapid and cost-effective, in dealing with much
larger sample populations than other methods.

The study demonstrated that the two complementary tech-
niques (EDA–SIcS) could give greater confidence for defining
and modeling the soil geochemical background of heavy metal
and provide a more reliable, realistic and cost-effective way for
regional environment decision-making and safety management in
the complex environment. The integrating method is suitable to
researching for not only regional soil geochemical background, but
also biogeochemical patterns and processes.
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